限制锂电池快充能力因素评估

最近,美国橡树岭国家实验室(Oak Ridge National Laboratory)和美国田纳西州立大学(University of Tennessee)的研究人员针对NMC811/石墨体系的快充限制因素进行了细致评估。

图文浅析

image.png

首先,作者分别分析了不同充电倍率下NMC811/石墨全电池、NMC811扣电和石墨扣电的容量发挥。图1A所示为NMC811/石墨软包电池的充放电曲线。不难看出充电倍率越高,电池容量衰减越快:1/10C充电电池容量为197mAh/gNMC6C充电电池容量衰减至140mAh/gNMC(72%容量保持率)

如图1B所示,与全电池相比,NMC811扣电1/10C充电电池容量为197mAh/gNMC6C充电电池容量为162mAh/gNMC(80%容量保持率)

1C为石墨的扣电充放电曲线。石墨容量随充电倍率提高而衰减的现象更为显著:1/3C充电容量为347mAh/ggraphite1C充电容量为284mAh/ggraphite(80%容量保持率),而6C充电容量则衰减至99mAh/ggraphite(40%容量保持率)

以上结果证明高倍率下石墨负极的性能恶化更为严重,负极是限制电池快充能力的关键因素。

image.png

为了进一步准确评估不同充电倍率下正、负极的容量特性及排除对电极的影响,作者取了50%SOC全电池的正、负极分别制成对称电池。

2A和图2B分别NMC811和石墨对称电池的充放电曲线,图2C为不同倍率下NMC811和石墨容量密度衰减及N/P比变化。与扣电结果相似,当充电倍率高于1 C石墨容量急剧降低,而NMC811则在1/10 C4C都还有着较好的容量保持。为了避免析锂,电池设计时都会让N/P比大于1。但如图2C所示,初始N/P=1.15,随着充电倍率提高石墨容量衰减过快,会出现N/P<1的现象(3 C充电N/P=14 C充电N/P=0.5),从而极易发生析锂(2D)

image.png

此外,作者还利用对称电池研究了NMC811和石墨在不同温度下的EIS谱。对比图3A和图3B可以发现,尽管石墨是限制电池快充能力的重要因素,但其在各测试温度下均有较小的电荷转移电阻,表明电荷转移电阻不是限制石墨快充性能的因素。

3C所示不同温度下NMC811和石墨对称电池的Arrhenius关系,其中斜率代表各电极的解溶剂化能。尽管Li+在石墨上的解溶剂化能较小,但考虑到石墨负极厚度大于NMC811正极厚度,高充电倍率下扩散和锂盐消耗将成为限制快充的重要因素。

增大正极负载量是提高电池能量密度的有效方式之一。但如图3D所示,对于NMC532,随着负载量的提高,高倍率下容量衰减愈发明显;而由于NMC811有着更高的体积能量密度,同等负载量和高倍率下其容量衰减较NMC532弱很多。

因此,正极材料负载量和种类也会影响电池快充特性,电池设计时也应予以考虑。

论文信息:

Chengyu Mao,RoseE.Ruther,Jian lin Li Zhi jia Du,Ilias Belharouak.Identifying the limiting electrode in lithium ion batteries for extreme fast charging.Electrochemistry Communications,2018,97:37-41.

(高工锂电网)

以上内容转载自其他媒体或他人发布,目的在于传播更多信息,转载内容并不代表真锂研究的立场。


广告 (购买广告位)

meiduhaichuang

香河昆仑

2019-01-08
82 views